Solutions Homework Exercises Week 2 - Wiskundige Methoden / Mathematical Methods - FEB21010(X) - Studeersnel (2024)

antwoorden

Vak

Wiskunde 2 (FEB11004)

123Documenten

Studenten deelden 123 documenten in dit vak

Universiteit

Erasmus Universiteit Rotterdam

Studiejaar: 2022/2023

Geüpload door:

Erasmus Universiteit Rotterdam

0volgers

3Uploads0upvotes

Aanbevolen voor jou

  • 16Uitwerkingen Tentamen Wiskunde 2, 1 Maart 2013Wiskunde 2Oefenmateriaal100% (9)
  • 1Cheatsheet zonder tentamenvragenWiskunde 2Samenvattingen100% (9)
  • 16Tentamen februari 2015, Vragen en antwoordenWiskunde 2Oefenmateriaal100% (9)
  • 4Tussentoets januari 2015, vragen en antwoordenWiskunde 2Oefenmateriaal100% (7)
  • 5Tentamen 1 maart 2013Wiskunde 2Oefenmateriaal100% (7)

Reacties

inloggen of registreren om een reactie te plaatsen.

Andere studenten bekeken ook

  • Samenvatting Wiskunde 2: werkgroep(en), differentievergelijkingen
  • Verplichte opgaven, antwoorden huiswerk week 7 Differentievergelijkingen
  • College 1 Sommencollege W2
  • College 3 - Rente en meetkundige reeksen en matrices
  • College 2 - Geavanceerd integreren

Gerelateerde documenten

  • Formuleblad Wiskunde 2, Formuleblad is toegestaan tijdens het tentamen en zal dan verstrekt worden.
  • Cheatsheet
  • Differentiatievergelijkingen
  • Samenvatting - Overzicht van formules Wiskunde 2
  • Cheatsheet zonder tentamenvragen
  • Formuleblad voor tentamen Wiskunde 2

Preview tekst

Wiskundige Methoden / Mathematical Methods - FEB21010(X)

Solutions to homework exercises Week 2

2 Without repetition:

(

4

2

)

= 6,

(

6

3

)

= 20,

(

8

4

)

= 70.

With repetition:

(

4 + 2 − 1

2

)

= 10,

(

6 + 3 − 1

3

)

= 56,

(

8 + 4 − 1

4

)

= 330.

2 We need to prove that |X| =

(

n i

) (

n − i r − i

) (

n − r s − i

)

,

where X = {(A, B) : A ⊆ Nn, |A| = r, B ⊆ Nn, |B| = s, |A ∩ B| = i}.

Step 1: The left-hand side is already written as the number of elements in a set. Hence, we canskip Step 1.

Step 2: Define the set Y as follows

Y = {(D, E, F ) : D ⊆ Nn, |D| = i, E ⊆ Nn \ D, |E| = r − i, F ⊆ (Nn \ D) \ E, |F | = s − i}.

Note that any element (D, E, F ) ∈ Y can be obtained by first selecting D ⊆ Nn, then E ⊆ Nn \D,and finally F ⊆ (Nn \ D) \ E. For D ⊆ Nn with |D| = i we choose i elements from a set with|Nn| = n elements. This can be done in

(

n i

)

ways. For E ⊆ Nn \ D with |E| = r − i we

choose r − i elements from a set with |Nn \ D| = n − i elements. This can be done in

(

n − i r − i

)

ways. Finally, for F ⊆ (Nn \ D) \ E with |F | = s − i we choose s − i elements from a set with|(Nn \ D) \ E| = n − i − (r − i) = n − r elements. This can be done in

(

n − r s − i

)

ways. It followsthat|Y | =

(

n i

) (

n − i r − i

) (

n − r s − i

)

.

Step 3: Define now the function

f : X → Y with f ((A, B)) = (A ∩ B, A \ B, B \ A),and its inversef − 1 : Y → X with f − 1 ((D, E, F )) = (D ∪ E, D ∪ F ).

In order to show that we defined the function f correctly, we need to check that f is a well-definedfunction. Let (A, B) ∈ X, then f ((A, B)) = (A ∩ B, A \ B, B \ A) and

(a) A ∩ B ⊆ Nn and |A ∩ B| = i by definition of X ✓;(b) A \ B and A ∩ B are disjoint and A, B ⊆ Nn, hence A \ B ⊆ N \ (A ∩ B) and |A \ B| = |A \ (A ∩ B)| = |A| − |A ∩ B| = r − i ✓;

(c) B \ A and A ∩ B, A \ B are disjoint and A, B ⊆ Nn, hence B \ A ⊆ (Nn \ (A ∩ B)) \ (A \ B) and |B \ A| = |B \ (A ∩ B)| = |B| − |A ∩ B| = s − i ✓.

In order to show that f − 1 is indeed the inverse function of f , one needs to verify that

f − 1 (f ((A, B))) = (A, B) for all (A, B) ∈ X andf (f − 1 ((D, E, F ))) = (D, E, F ) for all (D, E, F ) ∈ Y.

For this, let (A, B) ∈ X. Then,

f − 1 (f ((A, B))) = f − 1 ((A ∩ B, A \ B, B \ A)) = ((A ∩ B) ∪ (A \ B), (A ∩ B) ∪ (B \ A)) = (A, B)

Similarly, let (D, E, F ) ∈ Y. Then,

f (f − 1 ((D, E, F ))) = f ((D ∪ E, D ∪ F )) = ((D ∪ E) ∩ (D ∪ F ), (D ∪ E) \ (D ∪ F ), (D ∪ F ) \ (D ∪ E)) = (D, E, F ) (because D, E and F are pairwise disjoint)

Hence, f − 1 is indeed the inverse function of f. Therefore, by the one-to-one rule, it holds that|X| = |Y | and thus also |X| =

(

n i

) (

n − i r − i

) (

n − r s − i

)

.

2 (a) We need to prove that ( n k

)

(n − k) =

(

nk + 1

)

(k + 1).

Step 1: Define the set X as follows

X = {(A, x) : A ⊆ Nn, |A| = k, x ∈ Nn \ A}.

Note that any element (A, x) ∈ X can be obtained by first selecting A ⊆ Nn, then x ∈ Nn\A.For A ⊆ Nn with |A| = k we choose k elements from a set with |Nn| = n elements. This canbe done in

(

n k

)

ways. For x ∈ Nn \A we choose an element from a set with |Nn \A| = n−kelements. This can be done in n − k ways. It follows that

|X| =

(

n k

)

(n − k).

Step 2: Define the set Y as follows

Y = {(B, y) : B ⊆ Nn, |B| = k + 1, y ∈ B}.

Note that any element (B, y) ∈ Y can be obtained by first selecting B ⊆ Nn, then y ∈ B.For B ⊆ Nn with |B| = k + 1 we choose k + 1 elements from a set with |Nn| = n elements.This can be done in

(

nk + 1

)

ways. For y ∈ B we choose an element from a set with|B| = k + 1 elements. This can be done in k + 1 ways. It follows that

|Y | =

(

nk + 1

)

(k + 1).

elements. This can be done in

(

n r

)

ways. For D ⊆ C with |D| = r − i we choose r − i elements

from a set with |C| = r elements. This can be done in

(

rr − i

)

ways. Finally, for E ⊆ Nn \ C

with |E| = s − i we choose s − i elements from a set with |Nn \ C| = n − r elements. This can

be done in

(

n − r s − i

)

ways. It follows that

|X| =

(

n r

) (

rr − i

) (

n − r s − i

)

.

Step 2: Define the set Y as follows

Y = {(F, G, H) : F ⊆ Nn; |F | = r + s − 2 i; G ⊆ Nn \ F ; |G| = i; H ⊆ F ; |H| = r − i}.

Note that any element (F, G, H) ∈ Y can be obtained by first selecting F ⊆ Nn, then G ⊆ Nn \Fand then H ⊆ F. For F ⊆ Nn with |F | = r + s − 2 i we choose r + s − 2 i elements from a set

with |Nn| = n elements. This can be done in

(

nr + s − 2 i

)

ways. For G ⊆ Nn \ F with |G| = i

we choose i elements from a set with |Nn \ F | = n − (r + s − 2 i) = n − r − s + 2i elements. This

can be done in

(

n − r − s + 2i i

)

ways. Finally, for H ⊆ F with |H| = r − i we choose r − i

elements from a set with |F | = r + s − 2 i elements. This can be done in

(

r + s − 2 i r − i

)

ways.

It follows that

|Y | =

(

nr + s − 2 i

) (

n − r − s + 2i i

) (

r + s − 2 i r − i

)

.

Step 3: Define now the function

f : X → Y with f ((C, D, E)) = (D ∪ E, C \ D, D),

and its inverse f − 1 : Y → X with f − 1 ((F, G, H)) = (G ∪ H, H, F \ H).

In order to show that we defined the function f correctly, we need to check that f is a well-definedfunction. Let (C, D, E) ∈ X, then f ((C, D, E)) = (D ∪ E, C \ D, D) and

(a) D ∪ E ⊆ Nn and |D ∪ E| = |D| + |E| = r − i + s − i = rs − 2 i by the sum rule because D and E are disjoint ✓;(b) C \ D ⊆ Nn \ (D ∪ E) because E and C are disjoint, and |C \ D| = |C| − |D| = r − (r − i) = i because D ⊆ C ✓;(c) D ⊆ D ∪ E and trivially |D| = r − i ✓.

In order to show that f − 1 is indeed the inverse function of f , one needs to verify that

f − 1 (f ((C, D, E))) = (C, D, E) for all (C, D, E) ∈ X andf (f − 1 ((F, G, H))) = (F, G, H) for all (F, G, H) ∈ Y.

For this, let (C, D, E) ∈ X. Then,

f − 1 (f ((C, D, E))) = f − 1 ((D ∪ E, C \ D, D)) = ((C \ D) ∪ D, D, (D ∪ E) \ D) = (C, D, (D ∪ E) \ D) (because D ⊆ C) = (C, D, E) (because D and E are disjoint)

Similarly, let (C, D, E) ∈ Y. Then,

f (f − 1 ((F, G, H))) = f ((G ∪ H, H, F \ H)) = (H ∪ (F \ H), (G ∪ H) \ H, H) = (F, (G ∪ H) \ H, H) (because H ⊆ F ) = (F, G, H) (because G and H are disjoint)

Hence, f − 1 is indeed the inverse function of f. Therefore, by the one-to-one rule, it holds that|X| = |Y | and thus also that ( n r

) (

rr − i

) (

n − r s − i

)

=

(

nr + s − 2 i

) (

n − r − s + 2i i

) (

r + s − 2 i r − i

)

.

2 We need to prove that

∑ n

i=

(

n r

) (

r i

) (

n − r s − i

)

=

(

n r

) (

n s

)

.

Step 1: Define for i ∈ N with 0 ≤ i ≤ n, the sets

Xi = {(A, B, C) : A ⊆ Nn, |A| = r, B ⊆ A, |B| = i, C ⊆ Nn \ A, |C| = s − i}.

Note that any element (A, B, C) ∈ Xi can be obtained by first selecting A ⊆ Nn, then B ⊆ Aand then C ⊆ Nn \ A. For A ⊆ Nn with |A| = r we choose r elements from a set with |Nn| = nelements. This can be done in

(

n r

)

ways. For B ⊆ A with |B| = i we choose i elements from

a set with |A| = r elements. This can be done in

(

ri

)

ways. Finally, for C ⊆ Nn \ A with|C| = s − i we choose s − i elements from a set with |Nn \ A| = n − r elements. This can be donein

(

n − r s − i

)

ways. It follows that

|Xi| =

(

n r

) (

ri

) (

n − r s − i

)

.

We now prove that Xi ∩ Xj = ∅ if i ̸= j. Select a triple (A, B, C) ∈ Xi. It then holds that|B| = i. If j ̸= i, the equation |B| = j does not hold. This shows that (A, B, C) ∈/ Xj if j ̸= i.This shows that the sets Xi, for i ∈ N with 0 ≤ i ≤ n, are pairwise disjoint. We can thus applythe sum rule, and find

|X 0 ∪... ∪ Xn| = |X 0 | +... + |Xn| =

∑ n

i=

|Xi| =

∑ n

i=

(

n r

) (

r i

) (

n − r s − i

)

.

Step 2: Define the set Y as follows

Y = {(D, E) : D ⊆ Nn, |D| = r, E ⊆ Nn, |E| = s}.

Note that any element (D, E) ∈ Y can be obtained by first selecting D ⊆ Nn and then E ⊆ Nn.For D ⊆ Nn with |D| = r we choose r elements from a set with |Nn| = n elements. This can be

Step 1: Define for k ∈ N with m ≤ k ≤ n, the sets

Xk = {(A, B) : A ⊆ Nn, |A| = k, B ⊆ A, |B| = m}.

Note that any element (A, B) ∈ Xk can be obtained by first selecting A ⊆ Nn and then B ⊆ A.For A ⊆ Nn with |A| = k we choose k elements from a set with |Nn| = n elements. This can be

done in

(

nk

)

ways. For B ⊆ A with |B| = m we choose m elements from a set with |A| = k

elements. This can be done in

(

km

)

ways. It follows that

|Xk| =

(

nk

) (

km

)

=

(

km

) (

nk

)

.

We now prove that Xk ∩ Xl = ∅ if k ̸= l. Select a pair (A, B) ∈ Xk. It then holds that |A| = k.If l ̸= k, the equation |A| = l does not hold. This shows that (A, B) ∈/ Xl if l ̸= k. This showsthat the sets Xk, for k ∈ N with m ≤ k ≤ n, are pairwise disjoint. We can thus apply the sumrule, and find

|Xm ∪... ∪ Xn| = |Xm| +... + |Xn| =

∑ n

k=m

|Xk| =

∑ n

k=m

(

km

) (

nk

)

.

Step 2: Define the set Y as follows

Y = {(C, D) : C ⊆ Nn, |C| = m, D ⊆ Nn \ C}.

Note that any element (C, D) ∈ Y can be obtained by first selecting C ⊆ Nn and then D ⊆ Nn\C.For C ⊆ Nn with |C| = m we choose m elements from a set with |Nn| = n elements. This can

be done in

(

nm

)

ways. For D ⊆ Nn \ C we choose from a set with |Nn \ C| = n − m elements.

This can be done in 2n−m ways. It follows that

|Y | =

(

nm

)

2 n−m = 2n−m

(

nm

)

.

Step 3: Define now the function

f : Xm ∪... ∪ Xn → Y with f ((A, B)) = (B, A \ B),

and its inverse

f − 1 : Y → Xm ∪... ∪ Xn with f − 1 ((C, D)) = (C ∪ D, C).

In order to show that we defined the function f correctly, we need to check that f is a well-definedfunction. Let (A, B) ∈ Xk, then f ((A, B)) = (B, A \ B) and

(a) B ⊆ Nn and |B| = m trivially; ✓(b) A \ B ⊆ Nn \ B. ✓

In order to show that f − 1 is indeed the inverse function of f , one needs to verify that

f − 1 (f ((A, B))) = (A, B) for all (A, B) ∈ Xk with k ∈ N, m ≤ k ≤ n, andf (f − 1 ((C, D))) = (C, D) for all (C, D) ∈ Y.

For this, let (A, B) ∈ Xk with k ∈ N, m ≤ k ≤ n. Then,

f − 1 (f ((A, B))) = f − 1 ((B, A \ B)) = (B ∪ (A \ B), B) = (A, B) (because B ⊆ A)

Similarly, let (C, D) ∈ Y. Then,

f (f − 1 ((C, D))) = f ((C ∪ D, C)) = (C, (C ∪ D) \ C) = (C, D) (because C and D are disjoint)

Hence, f − 1 is indeed the inverse function of f. Therefore, by the one-to-one rule, it holds that|Xm ∪... ∪ Xn| = |Y | and thus also

∑ n

k=m

(

km

) (

n k

)

= 2n−m

(

nm

)

.

2 Note that x 1 + x 2 +... + xn ≥ 1 + 2 +... + n = 12 n(n + 1). Hence, if a < 12 n(n + 1), then there are no solutions. First, we show that the number of solutions that satisfy the equality

x 1 + x 2 +... + xn = a, (1)

where xi ∈ N with xi ≥ i for i ∈ { 1 , 2 ,... , n} is equal to the number of solutions that satisfy theequality y 1 + y 2 +... + yn = a − 12 n(n + 1), (2)where y 1 , y 2 ,... , yn ∈ { 0 , 1 , 2 , ...}. For this, define

X = {(x 1 , x 2 ,... , xn) : x 1 + x 2 +... + xn = a, x 1 ∈ { 1 , 2 , 3 , ...}, x 2 ∈ { 2 , 3 , 4 , ...},... , xn ∈ {n, n + 1, n + 2, ...}}

and

Y = {(y 1 , y 2 ,... , yn) : y 1 + y 2 +... + yn = a − 12 n(n + 1), y 1 , y 2 ,... , yn ∈ { 0 , 1 , 2 , ...}}.

Then, |X| is the number of solutions to (1) and |Y | is the number of solutions to (2). We haveto prove that |X| = |Y |. In order to do so, define the function

f : X → Y with f ((x 1 , x 2 ,... , xn)) = (x 1 − 1 , x 2 − 2 ,... , xn − n),

and its inverse

f − 1 : Y → X with f − 1 ((y 1 , y 2 ,... , yn)) = (y 1 + 1, y 2 + 2,... , yn + n).

Note that f is well-defined function. To see this, let (x 1 , x 2 ,... , xn) ∈ X. Then, f ((x 1 , x 2 ,... , xn)) =(x 1 − 1 , x 2 − 2 ,... , xn − n) and

(a) x 1 − 1 + x 2 − 2 +... + xn − n = x 1 + x 2 +... + xn − 12 n(n + 1) = a − 12 n(n + 1); ✓(b) since for all i = 1,... , n we have that xi ∈ {i, i + 1,.. .}, then xi − i ∈ { 0 , 1 ,.. .}. ✓

(c) x 2 ∈ { 2 , 3 , 4 ,.. .} ⇒ x 2 − 2 ∈ { 0 , 1 , 2 , 3 ,.. .}; ✓(d) x 3 , x 4 ∈ { 0 , 1 , 2 ,.. .}; ✓(e) x 1 + x 2 + x 3 + x 4 ∈ { 3 , 4 , 5 ,... , 98 , 99 } ⇒ 99 − x 1 − x 2 − x 3 − x 4 ∈ { 0 , 1 , 2 , 3 ,.. .}. ✓

Note that f − 1 is indeed the inverse function of f. To see this, let (x 1 , x 2 , x 3 , x 4 ) ∈ X. Then,

f − 1 (f ((x 1 , x 2 , x 3 , x 4 ))) = f − 1 ((x 1 − 1 , x 2 − 2 , x 3 , x 4 , 99 − x 1 − x 2 − x 3 − x 4 )) = ((x 1 − 1) + 1, (x 2 − 2) + 2, x 3 , x 4 ) = (x 1 , x 2 , x 3 , x 4 ).

Similarly, let (y 1 , y 2 , y 3 , y 4 , y 5 ) ∈ Y. Then,

f (f − 1 ((y 1 , y 2 , y 3 , y 4 , y 5 ))) = f ((y 1 + 1, y 2 + 2, y 3 , y 4 )) = ((y 1 + 1) − 1 , (y 2 + 2) − 2 , y 3 , y 4 , 99 − (y 1 + 1) − (y 2 + 2) − y 3 − y 4 ) = (y 1 , y 2 , y 3 , y 4 , 96 − y 1 − y 2 − y 3 − y 4 ) = (y 1 , y 2 , y 3 , y 4 , y 5 ) (because (y 1 , y 2 , y 3 , y 4 , y 5 ) ∈ Y , so y 1 + y 2 + y 3 + y 4 + y 5 = 96)

Therefore, by the one-to-one rule, it holds that |X| = |Y |.Next, we want a formula for the number of solutions to (4). Every solution is a 96-combinationwith repetition from 5. Hence, the number of solutions satisfies

|Y | =

(

5 + 96 − 1

96

)

=

(

100

96

)

.

Therefore, also |X| =

(

100

96

)

and thus equation (3) has

(

100

96

)

solutions.

2 The solution to this question will be published separately after the exercise lecture (Lecture 4).

Solutions Homework Exercises Week 2 - Wiskundige Methoden / Mathematical Methods - FEB21010(X) - Studeersnel (2024)
Top Articles
EzyQzy.8620 - Guild Wars 2 Forums
Cvs Com Unclaimedproperty Home 2016-2024 Form - Fill Out and Sign Printable PDF Template | airSlate SignNow
Why Are Fuel Leaks A Problem Aceable
Coindraw App
Best Theia Builds (Talent | Skill Order | Pairing + Pets) In Call of Dragons - AllClash
Wal-Mart 140 Supercenter Products
Craigslist In Fredericksburg
World of White Sturgeon Caviar: Origins, Taste & Culinary Uses
Vardis Olive Garden (Georgioupolis, Kreta) ✈️ inkl. Flug buchen
Sitcoms Online Message Board
Mission Impossible 7 Showtimes Near Regal Bridgeport Village
zopiclon | Apotheek.nl
Keniakoop
Kinkos Whittier
Mini Handy 2024: Die besten Mini Smartphones | Purdroid.de
Maplestar Kemono
Immortal Ink Waxahachie
Haunted Mansion Showtimes Near Millstone 14
Katherine Croan Ewald
Spergo Net Worth 2022
CANNABIS ONLINE DISPENSARY Promo Code — $100 Off 2024
Rondom Ajax: ME grijpt in tijdens protest Ajax-fans bij hoofdbureau politie
How to Watch the Fifty Shades Trilogy and Rom-Coms
Van Buren County Arrests.org
I Saysopensesame
Putin advierte que si se permite a Ucrania usar misiles de largo alcance, los países de la OTAN estarán en guerra con Rusia - BBC News Mundo
R. Kelly Net Worth 2024: The King Of R&B's Rise And Fall
Minnick Funeral Home West Point Nebraska
All Obituaries | Gateway-Forest Lawn Funeral Home | Lake City FL funeral home and cremation Lake City FL funeral home and cremation
Defending The Broken Isles
Dr. Nicole Arcy Dvm Married To Husband
Sams Gas Price Sanford Fl
UAE 2023 F&B Data Insights: Restaurant Population and Traffic Data
10 Best Quotes From Venom (2018)
Southtown 101 Menu
Syracuse Jr High Home Page
Six Flags Employee Pay Stubs
Stolen Touches Neva Altaj Read Online Free
Shaman's Path Puzzle
The Wichita Beacon from Wichita, Kansas
Powerball lottery winning numbers for Saturday, September 7. $112 million jackpot
Google Jobs Denver
Crystal Mcbooty
Magicseaweed Capitola
Craigs List Palm Springs
Mychart Mercy Health Paducah
Swsnj Warehousing Inc
Yosemite Sam Hood Ornament
Sams Gas Price San Angelo
Fine Taladorian Cheese Platter
The 13 best home gym equipment and machines of 2023
Loss Payee And Lienholder Addresses And Contact Information Updated Daily Free List Bank Of America
Latest Posts
Article information

Author: Jonah Leffler

Last Updated:

Views: 6009

Rating: 4.4 / 5 (65 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Jonah Leffler

Birthday: 1997-10-27

Address: 8987 Kieth Ports, Luettgenland, CT 54657-9808

Phone: +2611128251586

Job: Mining Supervisor

Hobby: Worldbuilding, Electronics, Amateur radio, Skiing, Cycling, Jogging, Taxidermy

Introduction: My name is Jonah Leffler, I am a determined, faithful, outstanding, inexpensive, cheerful, determined, smiling person who loves writing and wants to share my knowledge and understanding with you.